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Profiles of electrified drops and bubbles
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Abstract

Axisymmetric equilibrium shapes of conducting drops and bubbles, (1) pendant or sessile
on one face of a circular parallel-plate capacitor or (2) free and surface-charged, are
found by solving simultaneously che free-boundary problem consisting of the augmented Young-
Laplace eauation for surface shape and the Laplace equation for electrostatic field, given
the surface potential. The problem is nonlinear and the method is a finite element algo-
rithm employing Newton iteration, a modified frontal solver, and triangular as well as
quadrilateral tessellations of the domain exterior to the drop in order to fucilitate re-
fined analysis of sharply curved drop tips seen in experiments. The stability limit pre-
dicted oy this compute: -aided theoretical analysis agrees well with experiments of Wilson
and Taylor (1925). The instability and mechanism of charged droplet ejection are under
theoretical and experimental study.

1. Introcuc*ion

The shape of a conducting fluid inteiface is affected by mobile surface charge. The dis-
tribution of mobile free, surface charge is affected in turr by the shape of the inter-
face. At equilihriv . charge distributes to make uniform the potential of che interface.
But surface charge ciRa.es an electrical pressure that competes with capillary pressure
(the resultant of surface tension in a curved interface) and hydrostatic pressure to control
the shape.

Only cylindrical and spherical equilibrium drops have yielded to classical analysis
(Rayl=igh 1882, Basset 1894, Taylor 1969, Michael and O'Neill 1972). Shapes that depart
from standard coordinate surfaces can be analyzed by modern computer-aided mathematics with
finite element basi- functicns (Gifford 1979).

Observations of electrifiea drops and bubbles stand in need of ccurate cetical anal-
ysis of sihapes and stability. Free 3rops were studied by Nolan 1926, Macky lv.l, Doyle,
Moffett and Vonnegut 1964, and others; supported drops, by Zeleny 1914, 1917, Wilson and
Tayicr 1925, Macky 1930, Krohn 1974, and others. The results of analysis will pertain te
such fields as spray generation in technology and cloud physics in science.

2. Observations of charged sessile soap-bubbles

A soap-bubble sitting on the lower, wetted plate of a circular parallel-plate capacitor
appears hemispherical in the absence of field. As the field strength is raised the bubble
elongates along the field direction. Because the plate is wetted the circular contact line
slides freely and the contact angle remains approximately 90°. The prolate shape sequence
seen at field strengths up to a critical value is a family of stablc equilibrium shapes:
four members are shown in Fig. 1. Computer-aided theoretical analysis is used to track
this shape family in section 6.

Increasing the field strength even slightly beyond the critical value leads to a dynamic
succession. The end of the bubble rapidly narrows and becomes conical. Filaments are sub-
sequently ejectzd from the end of the bubble, this spitting bein~ accompanied by intense
vibrations of the tip. Such okservations were originally reported by Wilson and Taylor
(1925) and Macky (1930).

3. Statement of the two cases analyzed

The two situations treated here are f'own in Fig. 2:
Case 1.
Axisymmetric drop or bubble sessile (pendant) cn one face of a circular parallel-plate
capacitor (Fig. 2a).
Case ..
Free surface-charged drop in absence of an external imposed field (Fiz. 2b).

4. Governing dimensionless groups, equations and boundary conditions

The relevant dimensionless ., oups are compiled in Table 1. In the case of the free
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drops we choose to wcrk with the potential at the drop surface relative to "infinity" in-
stead of specifying the charge nn the drop. The two alternatives are of course fully equiv-
alent.

e e gy

The governing equations of electrostatics and capillary hydrostatics and boundary condi-
tions are summarized in Figs. 3 and 4. U is of course the electrostatic potential. 1In
the normal stress balances at the interfaces 2H is twice the dimensionless mean curvature,
a nonlinear function of first and second derivatives of the drop profiles; K is a reference
pressure, E? represents the electrical pressure created by surface charge, and 4 Gz is the
hydrostatic pressure created by a gravitational field (supposed absent in Case 2).

5. Computer-aided analysis

Theoretical computation of drop shape requires solving a system made nonlinear by the
free boundary and by the curvature and electrical pressure in the augmented Young-Laplace
equation. The procedure is:

(1) Estimate drop shape and electrostatic potential from either an analysis of limiting

case or experimental observation.

(ii) Partition, or tessellat~, the one-dimensionzl domain (drop profile) into curve
segments and the two-dimensional domain (surrounding spacce) into quadrilaterals
between spines 6 = constant (cf. Kistler 198l1) as indicated in Fig. 5.

(iii) In the 2-D domain construct finite element basis functions ¥1 (r,8) for the sub-~ 5
domain around each node:

- choose the biquadratic polynomial on the (€,n)-unit square;
- map each quadrilateral isoparametrically on:o the unit square (Fig. 6).

(iv) In the 1-D domain exploit the fact that the 1-D basis functions ¢1 (8) when
mapped isoparametrically onto 0 < € < 1 are simply and very conveniently the iso-
parametrically mapped ¥ (e,n = 0) (cf. Kistler 1981).

(v) Approximate the interface shape as

M .
£(8) = £ g, ¢* [8(e)]
. 1
i=1
and the potential as
N .
U(r,e) = £ Uy ¥ [x(e,m), 8le,ml. :
i=1 .

(vi) Form Galerkin weighted residuals and require them to vanish
(vii) Solve the resulting N + M + 1 nonlinear algebraic equations for the unknown
coefficients (q;, Y;, K) by Newton iteration:
- derivatived with respect to q.'s are calculated by ganging nodes along
spines; i
- the domain is updated at each iteration:
~ convergence approaches guadratic rate;
- the Jaccbian is valuable for continuation ia the parameters and evaluation
of stabaility.
(viii) Modify the frontal solver (Irons 1970, Hood 1976, 1977) to handle the constraint
of fixed volume and use it for the linear equation set in Newton iteration.
- The presence of a free boundary makes the frontal solver cost-effective.
(ix) ° ~minate iteration when the norm of the largest component of correcticn vector
1s sufficiently small.
(x) Change the parameter (typicaily E, or U,), estimate a shape by continuation and
begin anew.
- Prefer the secant version of first-order continuation because it 1s casier
to use than the tangent versicn and it maintains near-quadratic convergence’
with bigger parameter changes than does zeroth-order continuation.
(xi) Concentrate computational power where needed: J
- refine the tessellation in regions of sharp gradients; s
- derive Robin boundary condition to account for asymptotic far field behavior ?
and thernby shrink the computational domain.
An example of the last point is shown in Fig. 7: a finite element mesh of triangles and
rectangles which proved computationally efficient.

6. Results

Calculations were programmed in FORTRAN and made on the Control Data Corporation CYBER 74 :
at the University of Minnesota. 3 sec/iteration was typical for N + M + 1 = 183 unknowns -
and 2- 4 itera*ions were required to converge. )
Case 1. Results for arisymmetric supported bubble (G = 0) y

Finite element calculations for a bubbtle meeting one of the capacitor plates at a fixed %
contact angle of 90° simulate theoretically experiments with electrified soap-bubbles
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described in section 2 (cf. Wilson and Taylor 1925 and Macky 1938). Moreover, if the
spacing between the plates is much larger than the bubble radius, both experiment and the-
ory model a drop freely floating in a uniform applied electric field in the absence of
gravity. Drop shapes and equipotentials for a bubble of volume 27/3 are plotted as func-
tion of the parallel-plate electric field Es in Fig. 8, which shows that bubble profiles
are prolate in the field direction. This theoretical analysis using finite element basis
functions can be made as accurate as the computer allows and it already confirms Taylor's
(1964) spheroidal approximation.

Results for a bnbble of volume 2r/3 with its contact line fixed are plotted in Fig. 9.
The theoretical analysis predicts that bubble shape tends toward conical.

Families of drops of volume 2r/3 with either the contact line fixed or the contact angle
prescribed are plotted in parameter space in Fig. 10. In both cases the family loses
stability at a tur °'ng point, bubkles with contact line fixed being the more stable of the
two. The stability limit predicted for the fixed contact angle case by this computer-
aided theoretical an=lysis is within 3% of the value 0.321 obtained experimentally by
Wilson and Taylor (1:25).

Aspect ratio as function of parallel-plate electric field Es 1is plotted in Fig. 11.
when contact angle is fixed the critical bubble is elongated 1.82/1.37 times as much as
one with contact line fixed.

How surface charge distributes on supported bubbles is plotted in Fig. 12. The ordinate
is the ratio of local surface charge density on :he bubble to charge density on the plate
far from the bubble. Because electrical pressures goes as the square of charge density,
electrical pressure at the bubble tip attains values from 40 to 50 times as large as that
between two parallel-plates for the larger of the two voltages shown.

Case 2. Results for axisymmetric free surface-chargea drop

Though the sphere is an equilibrium shape at all values of charge q it was shown by
Lord Rayleigh (1882; see also Hendricks and Schneider 1962) that a sphere of radius R
is unstable to anv perturbation proportional to the Legendre polynomial of order n ,

Pn (cos 8 ), if the charge exceeds

q > 4n/(n+ 2) eooR3
or, in dimensionless form,

Q> 2m 2(n ¥ 2) or u_ > n +

Instability first appears for the n = 2 mode, i.e. the second spherical harmonic, and

the criteria Q = 41/Z or Uy = vZ are known as the Rayleigh limit. The finite element
analysis predicts the first instability to occur at Up = 1.42 , which is in good agree-~
ment with the value .7 , and to correspond to bifurcation from the trunk family of spheres
(Fig. 13). The theoretical analysis also reveals that bifurcation at the Rayleigh limit

is suberitical, thereby confirming Taylor's (1964) surmise from his spheroidal approxima-
<ion. A secondary bifurcation is found at Ug = 1.40 aloag this branch family of prolate
shapes. rhe t! 'oretical analysis accurately predicts the bifurcation points of the higher
modes, but these are not shown in Fig. 13.

7. Concluding Remarks

Charge repulsion can overcome the attractive-like action of surface tension and when it
does it limits the surface charge that can be stably carried by a fluid interface: at
the limiting charge density the interface becomes unstable.

C )mputer-aided analysis with finite element basis functions can handle relatively com-
plicated equilibrium profiles of electrified drops. The finite element algorithm developed
here is not limited in its applicability in contrast tc the method of Borzabadi and Bailey
(1978), who cal-.: ated profiles of drops hanging from a tube connected to a high voltage
source.

Additional vesults will be reported elsewhere. With the flow field inside the drop
accounted for, the methods developed here and certain others should make it possible to
analyze the dynamic succession in unstable drops and settle the long-standing question
of how charged drops break up.
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TABLE 1
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Figure 1. Observations of a charged sessile soap-bubble.
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Figure 2. (a) Axisymmetric drop or bubble sessile (pendant) on one face of a circular
parallel-~-plate capacitor; (b) free surface-charged drop (no applied field).
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Figure 12. Distribution of surface charge on sessile bubbles.
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